Tutorials in complex photonic media /
Tutorials in complex photonic media /
editors, Mikhail A. Noginov ... [et al.].
- Bellingham, Wash. : SPIE Press, c2009.
- xxv, 696 p., [6] p. of plates : ill. (some col.) ; 26 cm.
Includes bibliographical references and index.
Foreword -- Preface -- List of contributors -- List of abbreviations-- 1. Negative refraction / Martin W. McCall and Graeme Dewar. 1.1. Introduction -- 1.2. Background -- 1.3. Beyond natural media: waves that run backward -- 1.4. Wires and rings -- 1.5. Experimental confirmation -- 1.6. The "perfect" lens -- 1.7. The formal criterion for achieving negative phase velocity propagation -- 1.8. Fermat's principle and negative space -- 1.9. Cloaking -- 1.10. Conclusion -- Appendix I. The e([omega]) of a square wire array -- Appendix II. Physics of the wire array's plasma frequency and damping rate -- References -- 2. Optical hyperspace: negative refractive index and subwavelength imaging / Leonid V. Alekseyev, Zubin Jacob, and Evgenii Narimanov. 2.1. Introduction -- 2.2. Nonmagnetic negative refraction -- 2.3. Hyperbolic dispersion: materials -- 2.4. Applications -- 2.5. Conclusion -- References. 3. Magneto-optics and the Kerr effect with ferromagnetic materials / Allan D. Boardman and Neil King. 3.1. Introduction to magneto-optical materials and concepts -- 3.2. Reflection of light from a plane ferromagnetic surface -- 3.3. Enhancing the Kerr effect with attenuated total reflection -- 3.4. Numerical investigations of attenuated total reflection -- 3.5. Conclusions -- References -- 4. Symmetry properties of nonlinear magneto-optical effects / Yutaka Kawabe. 4.1. Introduction -- 4.2. Nonlinear optics in magnetic materials -- 4.3. Magnetic-field-induced second-harmonic generation -- 4.4. Effects due to an optical magnetic field or magnetic dipole moment transition -- 4.5. Experiments -- References -- 5. Optical magnetism in plasmonic metamaterials / Gennady Shvets and Yaroslav A. Urzhumov. 5.1. Introduction -- 5.2. Why is optical magnetism difficult to achieve? -- 5.3. Effective quasistatic dielectric permittivity of a plasmonic metamaterial -- 5.4. Summary -- 5.5. Appendix. Electromagnetic red shifts of plasmonic resonances -- References. 6. Chiral photonic media / Ian Hodgkinson and Levi Bourke. 6.1. Introduction -- 6.2. Stratified anisotropic media -- 6.3. Chiral architectures and characteristic matrices -- 6.4. Reflectance spectra and polarization response maps -- 6.5. Summary -- References -- 7. Optical vortices / Kevin O'Holleran, Mark R. Dennis, and Miles J. Padgett. 7.1. Introduction -- 7.2. Locating vortex lines -- 7.3. Making beams containing optical vortices -- 7.4. Topology of vortex lines -- 7.5. Computer simulation of vortex structures -- 7.6. Vortex structures in random fields -- 7.7. Experiments for visualizing vortex structures -- 7.8. Conclusions -- References -- 8. Photonic crystals: from fundamentals to functional photonic opals / Durga P. Aryal, Kosmas L. Tsakmakidis, and Ortwin Hess. 8.1. Introduction -- 8.2. Principles of photonic crystals -- 8.3. One-dimensional photonic crystals -- 8.4. Generalization to two- and three-dimensional photonic crystals -- 8.5. Physics of Inverse-Opal Photonic Crystals -- 8.6. Double-Inverse-Opal Photonic Crystals (DIOPCs) -- 8.7. Conclusion -- 8.8. Appendix: Plane Wave Expansion (PWE) method -- References -- 9. Wave interference and modes in random media / Azriel Z. Genack and Sheng Zhang. 9.1. Introduction -- 9.2. Wave interference -- 9.3. Modes -- 9.4. Conclusions -- References -- 10. Chaotic behavior of random lasers / Diederik S. Wiersma, Sushil Mujumdar, Stefano Cavalieri, Renato Torre, Gian-Luca Oppo, Stefano Lepri. 10.1. Introduction -- 10.2. Experiments on emission spectra -- 10.3. Experiments on speckle patterns -- 10.4. Modeling -- 10.5. Lévy statistics in random laser emission -- 10.6. Discussion -- References. 11. Lasing in random media / Hui Cao. 11.1. Introduction -- 11.2. Random lasers with incoherent feedback -- 11.3. Random lasers with coherent feedback -- 11.4. Potential applications of random lasers -- References. Color plate section. 12. Feedback in random lasers / Mikhail A. Noginov. 12.1. Introduction -- 12.2. The concept of a laser -- 12.3. Lasers with nonresonant feedback and random lasers -- 12.4. Photon migration and localization in scattering media and their applications to random lasers -- 12.5. Neodymium random lasers with nonresonant feedback -- 12.6. ZnO random lasers with resonant feedback -- 12.7. Stimulated emission feedback: from nonresonant to resonant and back to nonresonant -- 12.8. Summary of various random laser operation regimes -- References -- 13. Optical metamaterials with zero loss and plasmonic nanolasers / Andrey K. Sarychev. 13.1. Introduction -- 13.2. Magnetic plasmon resonance -- 13.3. Electrodynamics of a nanowire resonator -- 13.4. Capacitance and inductance of two parallel wires -- 13.5. Lumped model of a resonator filled with an active medium -- 13.6. Interaction of nanontennas with an active host medium -- 13.7. Plasmonic nanolasers and optical magnetism -- 13.8. Conclusions -- References. 14. Resonance energy transfer: theoretical foundations and developing applications / David L. Andrews. 14.1. Introduction -- 14.2. Electromagnetic origins -- 14.3. Features of the pair transfer rate -- 14.4. Energy transfer in heterogeneous solids -- 14.5. Directed energy transfer -- 14.6. Developing applications -- 14.7. Conclusion -- References -- 15. Optics of nanostructured materials from first principles / Vladimir I. Gavrilenko. 15.1. Introduction -- 15.2. Optical response from first principles -- 15.3. Effect of the local field in optics -- 15.4. Electrons in quantum confined systems -- 15.5. Cavity quantum electrodynamics -- 15.6. Optical Raman spectroscopy of nanostructures -- 15.7. Concluding remarks -- Appendix I. Electron energy structure and standard density functional theory -- Appendix II. Optical functions within perturbation theory -- Appendix III. Evaluation of the polarization function including the local field effect -- Appendix IV. Optical field Hamiltonian in second quantization representation -- References.-- 16 Organic photonic materials / Larry R. Dalton, Philip A. Sullivan, Denise H. Bale, Scott R. Hammond, Benjamin C. Olbrict, Harrison Rommel, Bruce Eichinger, and Bruce H. Robinson. 16.1 Preface -- 16.2 Introduction -- 16.3 Effects of dielectric permittivity and dispersion -- 16.4 Complex dendrimer materials: effects of covalent bonds -- 16.5 Binary Chromophore Organic Glasses (BCOGs) -- 16.6 Thermal and photochemical stability: lattice hardening -- 16.7 Thermal and photochemical stability: measurement -- 16.8 Devices and applications -- 16.9 Summary and conclusions -- 16.10. Appendix. Linear and nonlinear polarization -- References. 17. Charge transport and optical effects in disordered organic semiconductors / Harry H. L. Kwok, You-Lin Wu, and Tai-Ping Sun. 17.1. Introduction -- 17.2. Charge transport -- 17.3. Impedance spectroscopy: bias and temperature dependence -- 17.4. Transient spectroscopy -- 17.5. Thermoelectric effect -- 17.6. Exciton formation -- 17.7. Space-charge effect -- 17.8. Charge transport in the field-effect structure -- References -- 18. Holography and its applications / H. John Caulfield and Chandra S. Vikram. 18.1. Introduction -- 18.2. Basic information on holograms -- 18.2.1 Hologram types -- 18.3. Recording materials for holographic metamaterials -- 18.4. Computer-generated holograms -- 18.5. Simple functionalities of holographic materials -- 18.6. Phase conjugation and holographic optical elements -- 18.7. Related applications and procedures -- References -- In memoriam: Chandra S. Vikram -- 19. Slow and fast light / Joseph E. Vornehm, Jr. and Robert W. Boyd. 19.1. Introduction -- 19.2. Slow light based on material resonances -- 19.3. Slow light based on material structure -- 19.4. Additional considerations -- 19.5. Potential applications -- References -- About the editors -- Index.
The field of complex photonic media encompasses many leading-edge areas in physics, chemistry, nanotechnology, materials science, and engineering. In [i]Tutorials in Complex Photonic Media[/i], leading experts have brought together 19 tutorials on breakthroughs in modern optics, such as negative refraction, chiral media, plasmonics, photonic crystals, and organic photonics.
9780819477736 (hardcover)
2009035663
Photonics.
Photonic crystals.
Metamaterials.
TA1520 / .T88 2009
621.36
Includes bibliographical references and index.
Foreword -- Preface -- List of contributors -- List of abbreviations-- 1. Negative refraction / Martin W. McCall and Graeme Dewar. 1.1. Introduction -- 1.2. Background -- 1.3. Beyond natural media: waves that run backward -- 1.4. Wires and rings -- 1.5. Experimental confirmation -- 1.6. The "perfect" lens -- 1.7. The formal criterion for achieving negative phase velocity propagation -- 1.8. Fermat's principle and negative space -- 1.9. Cloaking -- 1.10. Conclusion -- Appendix I. The e([omega]) of a square wire array -- Appendix II. Physics of the wire array's plasma frequency and damping rate -- References -- 2. Optical hyperspace: negative refractive index and subwavelength imaging / Leonid V. Alekseyev, Zubin Jacob, and Evgenii Narimanov. 2.1. Introduction -- 2.2. Nonmagnetic negative refraction -- 2.3. Hyperbolic dispersion: materials -- 2.4. Applications -- 2.5. Conclusion -- References. 3. Magneto-optics and the Kerr effect with ferromagnetic materials / Allan D. Boardman and Neil King. 3.1. Introduction to magneto-optical materials and concepts -- 3.2. Reflection of light from a plane ferromagnetic surface -- 3.3. Enhancing the Kerr effect with attenuated total reflection -- 3.4. Numerical investigations of attenuated total reflection -- 3.5. Conclusions -- References -- 4. Symmetry properties of nonlinear magneto-optical effects / Yutaka Kawabe. 4.1. Introduction -- 4.2. Nonlinear optics in magnetic materials -- 4.3. Magnetic-field-induced second-harmonic generation -- 4.4. Effects due to an optical magnetic field or magnetic dipole moment transition -- 4.5. Experiments -- References -- 5. Optical magnetism in plasmonic metamaterials / Gennady Shvets and Yaroslav A. Urzhumov. 5.1. Introduction -- 5.2. Why is optical magnetism difficult to achieve? -- 5.3. Effective quasistatic dielectric permittivity of a plasmonic metamaterial -- 5.4. Summary -- 5.5. Appendix. Electromagnetic red shifts of plasmonic resonances -- References. 6. Chiral photonic media / Ian Hodgkinson and Levi Bourke. 6.1. Introduction -- 6.2. Stratified anisotropic media -- 6.3. Chiral architectures and characteristic matrices -- 6.4. Reflectance spectra and polarization response maps -- 6.5. Summary -- References -- 7. Optical vortices / Kevin O'Holleran, Mark R. Dennis, and Miles J. Padgett. 7.1. Introduction -- 7.2. Locating vortex lines -- 7.3. Making beams containing optical vortices -- 7.4. Topology of vortex lines -- 7.5. Computer simulation of vortex structures -- 7.6. Vortex structures in random fields -- 7.7. Experiments for visualizing vortex structures -- 7.8. Conclusions -- References -- 8. Photonic crystals: from fundamentals to functional photonic opals / Durga P. Aryal, Kosmas L. Tsakmakidis, and Ortwin Hess. 8.1. Introduction -- 8.2. Principles of photonic crystals -- 8.3. One-dimensional photonic crystals -- 8.4. Generalization to two- and three-dimensional photonic crystals -- 8.5. Physics of Inverse-Opal Photonic Crystals -- 8.6. Double-Inverse-Opal Photonic Crystals (DIOPCs) -- 8.7. Conclusion -- 8.8. Appendix: Plane Wave Expansion (PWE) method -- References -- 9. Wave interference and modes in random media / Azriel Z. Genack and Sheng Zhang. 9.1. Introduction -- 9.2. Wave interference -- 9.3. Modes -- 9.4. Conclusions -- References -- 10. Chaotic behavior of random lasers / Diederik S. Wiersma, Sushil Mujumdar, Stefano Cavalieri, Renato Torre, Gian-Luca Oppo, Stefano Lepri. 10.1. Introduction -- 10.2. Experiments on emission spectra -- 10.3. Experiments on speckle patterns -- 10.4. Modeling -- 10.5. Lévy statistics in random laser emission -- 10.6. Discussion -- References. 11. Lasing in random media / Hui Cao. 11.1. Introduction -- 11.2. Random lasers with incoherent feedback -- 11.3. Random lasers with coherent feedback -- 11.4. Potential applications of random lasers -- References. Color plate section. 12. Feedback in random lasers / Mikhail A. Noginov. 12.1. Introduction -- 12.2. The concept of a laser -- 12.3. Lasers with nonresonant feedback and random lasers -- 12.4. Photon migration and localization in scattering media and their applications to random lasers -- 12.5. Neodymium random lasers with nonresonant feedback -- 12.6. ZnO random lasers with resonant feedback -- 12.7. Stimulated emission feedback: from nonresonant to resonant and back to nonresonant -- 12.8. Summary of various random laser operation regimes -- References -- 13. Optical metamaterials with zero loss and plasmonic nanolasers / Andrey K. Sarychev. 13.1. Introduction -- 13.2. Magnetic plasmon resonance -- 13.3. Electrodynamics of a nanowire resonator -- 13.4. Capacitance and inductance of two parallel wires -- 13.5. Lumped model of a resonator filled with an active medium -- 13.6. Interaction of nanontennas with an active host medium -- 13.7. Plasmonic nanolasers and optical magnetism -- 13.8. Conclusions -- References. 14. Resonance energy transfer: theoretical foundations and developing applications / David L. Andrews. 14.1. Introduction -- 14.2. Electromagnetic origins -- 14.3. Features of the pair transfer rate -- 14.4. Energy transfer in heterogeneous solids -- 14.5. Directed energy transfer -- 14.6. Developing applications -- 14.7. Conclusion -- References -- 15. Optics of nanostructured materials from first principles / Vladimir I. Gavrilenko. 15.1. Introduction -- 15.2. Optical response from first principles -- 15.3. Effect of the local field in optics -- 15.4. Electrons in quantum confined systems -- 15.5. Cavity quantum electrodynamics -- 15.6. Optical Raman spectroscopy of nanostructures -- 15.7. Concluding remarks -- Appendix I. Electron energy structure and standard density functional theory -- Appendix II. Optical functions within perturbation theory -- Appendix III. Evaluation of the polarization function including the local field effect -- Appendix IV. Optical field Hamiltonian in second quantization representation -- References.-- 16 Organic photonic materials / Larry R. Dalton, Philip A. Sullivan, Denise H. Bale, Scott R. Hammond, Benjamin C. Olbrict, Harrison Rommel, Bruce Eichinger, and Bruce H. Robinson. 16.1 Preface -- 16.2 Introduction -- 16.3 Effects of dielectric permittivity and dispersion -- 16.4 Complex dendrimer materials: effects of covalent bonds -- 16.5 Binary Chromophore Organic Glasses (BCOGs) -- 16.6 Thermal and photochemical stability: lattice hardening -- 16.7 Thermal and photochemical stability: measurement -- 16.8 Devices and applications -- 16.9 Summary and conclusions -- 16.10. Appendix. Linear and nonlinear polarization -- References. 17. Charge transport and optical effects in disordered organic semiconductors / Harry H. L. Kwok, You-Lin Wu, and Tai-Ping Sun. 17.1. Introduction -- 17.2. Charge transport -- 17.3. Impedance spectroscopy: bias and temperature dependence -- 17.4. Transient spectroscopy -- 17.5. Thermoelectric effect -- 17.6. Exciton formation -- 17.7. Space-charge effect -- 17.8. Charge transport in the field-effect structure -- References -- 18. Holography and its applications / H. John Caulfield and Chandra S. Vikram. 18.1. Introduction -- 18.2. Basic information on holograms -- 18.2.1 Hologram types -- 18.3. Recording materials for holographic metamaterials -- 18.4. Computer-generated holograms -- 18.5. Simple functionalities of holographic materials -- 18.6. Phase conjugation and holographic optical elements -- 18.7. Related applications and procedures -- References -- In memoriam: Chandra S. Vikram -- 19. Slow and fast light / Joseph E. Vornehm, Jr. and Robert W. Boyd. 19.1. Introduction -- 19.2. Slow light based on material resonances -- 19.3. Slow light based on material structure -- 19.4. Additional considerations -- 19.5. Potential applications -- References -- About the editors -- Index.
The field of complex photonic media encompasses many leading-edge areas in physics, chemistry, nanotechnology, materials science, and engineering. In [i]Tutorials in Complex Photonic Media[/i], leading experts have brought together 19 tutorials on breakthroughs in modern optics, such as negative refraction, chiral media, plasmonics, photonic crystals, and organic photonics.
9780819477736 (hardcover)
2009035663
Photonics.
Photonic crystals.
Metamaterials.
TA1520 / .T88 2009
621.36