Raman Research Institute Library OPAC

Raman Research Institute Library OPAC

Amazon cover image
Image from Amazon.com

Lunar gravimetry : revealing the far-side / by Rune Floberghagen.

By: Material type: TextTextSeries: Astrophysics and space science library ; v. 273Publication details: Dordrecht ; Boston : Kluwer Academic Publishers, c2002.Description: xiii, 286 p. : ill. ; 25 cmISBN:
  • 140200544X (alk. paper)
Subject(s): DDC classification:
  • 523.3/1 21
LOC classification:
  • QB591 .F57 2002
Online resources:
Contents:
Machine generated contents note: 1 Introduction 1 -- 2 Fundamentals of lunar gravity field recovery 7 -- 21 Scientific rationale 7 -- 211 Science of the Moon 8 -- 212 Flight dynamics and satellite orbit modelling 14 -- 22 State-of-the-art of lunar gravity field modelling 16 -- 221 Representation formulae for the gravitational potential 17 -- 222 Lunar satellite tracking data and orbital characteristics of -- previous missions 20 -- 223 Selenopotential models 24 -- 23 Future solutions 30 -- 231 Why satellite-to-satellite tracking? 30 -- 232 Prospects and future missions 32 -- 3 Assessment of modern lunar gravity field models through orbit analysis 35 -- 31 Introduction 35 -- 32 The role of model calibration 38 -- 33 Covariance analysis of GLGM-2 and LP75G 42 -- 331 Linear orbit perturbation theory 42 -- 332 Projection of the covariance matrix 46 -- 333 Time-wise characteristics of low lunar orbit accuracy 47 -- 334 Spatial characteristics of low lunar orbit errors 63 -- 34 Long-term orbit behaviour 70 -- 341 Frozen orbits 71 -- 342 Periodic orbits 74 -- 35 Discussion and outlook based on later Lunar Prospector products 76 -- 4 Ill-conditioning of the lunar gravimetric inverse problem 79 -- 41 Setting the stage 81 -- 411 The Picard condition 85 -- 412 Discretisation and the singular value decomposition 85 -- 413 Regularisation and filtering 88 -- 414 The discrete Picard condition 89 -- 42 The multiple roles of regularisation in lunar gravimetry 92 -- 43 Regularisation methods and the view on the estimation process 95 -- 431 Tikhonov-Phillips regularisation 96 -- 432 Biased estimation 100 -- 433 Error measures and error propagation 101 -- 44 Information content and effect of the bias on the quality description 105 -- 441 Ratio measures 106 -- 442 Contribution measures 110 -- 443 Selenoid height errors 114 -- 45 Searching for the optimal regularisation parameter 119 -- 451 Pragmatic parameter choice methods for single-parameter -- regularisation 120 -- 452 L-curve and quasi-optimality regularisation parameters for -- GLGM-2 and LP75G 127 -- 453 Discussion and general remarks on error assessment and cal- -- ibration of selenopotential models 131 -- 5 Lunar gravity field modelling experiments with European data sets 135 -- 51 Introduction 1135 -- 52 The Lunar Prospector tracking campaign at Weilheim 137 -- 521 Spacecraft rotation and its effect on the Doppler observations 141 -- 53 Orbit determination using Weilheim data 143 -- 531 Computational models 145 -- 532 Estimation parameters 148 -- 533 Orbit evaluation 149 -- 54 Gravity field recovery using Weilheim data 153 -- 541 Approach to the gravity field estimation 154 -- 542 The Weilheim-adjusted selenopotential solutions 157 -- 543 Orbit quality 162 -- 544 Degree variations and solution consistency 171 -- 545 Discussion 173 -- 6 Towards a global data set 177 -- 61 Introduction 177 -- 62 SST concepts 179 -- 621 Low-low configurations - the MORO study 181 -- 622 High-low configurations - the SELENE experiment 184 -- 63 Covariance analysis of low-low selenopotential recovery 186 -- 631 Time-wise approach in the time-domain - the Colombo method 188 -- 632 The linear low-low SST observation equation 193 -- 633 Formal errors based on low-low range rate measurements 197 -- 634 A note on omission errors 208 -- 64 Full-scale simulation of low-low selenopotential estimation 209 -- 641 The simulation setup 211 -- 642 Gravity field recovery results 215 -- 7 Epilogue 221 -- 71 Conclusions 221 -- 72 Recommendations for further research 228 -- A Fundamentals of selenography 231 -- B The generalised singular value decomposition (GSVD) 239 -- C Some useful coordinate transformations 241 -- D The Euler-Lagrange equation and the range rate SST signal 245 -- D1 The Euler-Lagrange formalism 245 -- D2 Satellite velocity and the conservative forcing function in inertial space247 -- D3 The forcing function in body-fixed rotating coordinates 248 -- D4 The low-low range rate SST signal equation 250 -- Bibliography 253 -- Index 279.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliographical references (p. [253]-278) and index.

Machine generated contents note: 1 Introduction 1 -- 2 Fundamentals of lunar gravity field recovery 7 -- 21 Scientific rationale 7 -- 211 Science of the Moon 8 -- 212 Flight dynamics and satellite orbit modelling 14 -- 22 State-of-the-art of lunar gravity field modelling 16 -- 221 Representation formulae for the gravitational potential 17 -- 222 Lunar satellite tracking data and orbital characteristics of -- previous missions 20 -- 223 Selenopotential models 24 -- 23 Future solutions 30 -- 231 Why satellite-to-satellite tracking? 30 -- 232 Prospects and future missions 32 -- 3 Assessment of modern lunar gravity field models through orbit analysis 35 -- 31 Introduction 35 -- 32 The role of model calibration 38 -- 33 Covariance analysis of GLGM-2 and LP75G 42 -- 331 Linear orbit perturbation theory 42 -- 332 Projection of the covariance matrix 46 -- 333 Time-wise characteristics of low lunar orbit accuracy 47 -- 334 Spatial characteristics of low lunar orbit errors 63 -- 34 Long-term orbit behaviour 70 -- 341 Frozen orbits 71 -- 342 Periodic orbits 74 -- 35 Discussion and outlook based on later Lunar Prospector products 76 -- 4 Ill-conditioning of the lunar gravimetric inverse problem 79 -- 41 Setting the stage 81 -- 411 The Picard condition 85 -- 412 Discretisation and the singular value decomposition 85 -- 413 Regularisation and filtering 88 -- 414 The discrete Picard condition 89 -- 42 The multiple roles of regularisation in lunar gravimetry 92 -- 43 Regularisation methods and the view on the estimation process 95 -- 431 Tikhonov-Phillips regularisation 96 -- 432 Biased estimation 100 -- 433 Error measures and error propagation 101 -- 44 Information content and effect of the bias on the quality description 105 -- 441 Ratio measures 106 -- 442 Contribution measures 110 -- 443 Selenoid height errors 114 -- 45 Searching for the optimal regularisation parameter 119 -- 451 Pragmatic parameter choice methods for single-parameter -- regularisation 120 -- 452 L-curve and quasi-optimality regularisation parameters for -- GLGM-2 and LP75G 127 -- 453 Discussion and general remarks on error assessment and cal- -- ibration of selenopotential models 131 -- 5 Lunar gravity field modelling experiments with European data sets 135 -- 51 Introduction 1135 -- 52 The Lunar Prospector tracking campaign at Weilheim 137 -- 521 Spacecraft rotation and its effect on the Doppler observations 141 -- 53 Orbit determination using Weilheim data 143 -- 531 Computational models 145 -- 532 Estimation parameters 148 -- 533 Orbit evaluation 149 -- 54 Gravity field recovery using Weilheim data 153 -- 541 Approach to the gravity field estimation 154 -- 542 The Weilheim-adjusted selenopotential solutions 157 -- 543 Orbit quality 162 -- 544 Degree variations and solution consistency 171 -- 545 Discussion 173 -- 6 Towards a global data set 177 -- 61 Introduction 177 -- 62 SST concepts 179 -- 621 Low-low configurations - the MORO study 181 -- 622 High-low configurations - the SELENE experiment 184 -- 63 Covariance analysis of low-low selenopotential recovery 186 -- 631 Time-wise approach in the time-domain - the Colombo method 188 -- 632 The linear low-low SST observation equation 193 -- 633 Formal errors based on low-low range rate measurements 197 -- 634 A note on omission errors 208 -- 64 Full-scale simulation of low-low selenopotential estimation 209 -- 641 The simulation setup 211 -- 642 Gravity field recovery results 215 -- 7 Epilogue 221 -- 71 Conclusions 221 -- 72 Recommendations for further research 228 -- A Fundamentals of selenography 231 -- B The generalised singular value decomposition (GSVD) 239 -- C Some useful coordinate transformations 241 -- D The Euler-Lagrange equation and the range rate SST signal 245 -- D1 The Euler-Lagrange formalism 245 -- D2 Satellite velocity and the conservative forcing function in inertial space247 -- D3 The forcing function in body-fixed rotating coordinates 248 -- D4 The low-low range rate SST signal equation 250 -- Bibliography 253 -- Index 279.

There are no comments on this title.

to post a comment.
Maintained by RRI Library