The chemical bond in inorganic chemistry : the bond valence model / I. David Brown.
Material type: TextSeries: International Union of Crystallography monographs on crystallography ; 12Publication details: Oxford ; New York : Oxford University Press, 2002.Description: x, 278 p. : ill. ; 25 cmISBN:- 0198508700
- 541.2/24 21
- QD461 .B837 2002
Item type | Current library | Call number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|
Books | Raman Research Institute Library | 541.57 BRO (Browse shelf(Opens below)) | Available | 22368 |
Browsing Raman Research Institute Library shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | |||||
541.5:547 ZIM Quantum mechanics for organic chemists | 541.57 ATK Atkins' molecules / | 541.57 BRE Physical methods for determining molecular geometry | 541.57 BRO The chemical bond in inorganic chemistry : | 541.57 BRU The nature of the mechanical bond : | 541.57 BUR Chemical architecture | 541.57 COT The strengths of chemical bonds |
Includes bibliographical references (p. ([252]-270) and index.
Machine generated contents note: I Theory -- 2 The ionic bond -- 2.1 Introduction -- 2.2 Crystal energy and the Coulomb field -- 2.3 How are the atom fragments chosen? -- 2.4 The Madelung field of a crystal -- 2.5 Bond networks and bond graphs -- 2.6 Coordination number -- 2.7 Conclusions -- 3 The bond valence model -- 3.1 Experimental bond valences and bond lengths -- 3.2 Empirical network equations -- 3.3 The bond valence model -- 3.4 The distortion theorem -- 3.5 Bond networks with non-bipartite graphs -- II Chemistry -- 4 Anion and cation bonding strengths -- 4.1 Bond graphs and coordination number -- 4.2 Anion bonding strength -- 4.3 Cation bonding strength -- 4.4 The valence matching principle -- 4.5 Hard and soft acids and bases -- 4.6 Applications of the valence matching principle -- 5 Liquids -- 5.1 introduction -- 5.2 Cation and anion bonding strength of water -- 5.3 Reactions of cations with water -- 5.4 Reactions of anions with water -- 5.5 Aqueous solubility -- 5.6 Aqueous solutions of soft ions -- 5.7 Non-aqueous solutions and melts -- 6 Cation coordination number -- 6.1 Introduction -- 6.2 Anion-anion repulsion -- 6.3 The strength of the anions -- 6.4 Other factors -- 6.5 Applying the different effects -- 7 Hydrogen bonds -- 7.1 Introduction -- 7.2 The role of anion-anion repulsion -- 7.3 The normal hydrogen bond -- 7.4 Strong hydrogen bonds -- 7.5 Weak hydrogen bonds -- 7.6 The structural chemistry of hydrogen bonds -- 7.7 Other types of hydrogen bonds -- 7.8 Assigning experimental bond valences to hydrogen bonds -- 8 Electronically distorted structures -- 8.1 The origins of electronic distortion -- 8.2 Non-bonding valence shell electrons -- 8.3 Transition metals -- 8.3.1 Jahn-Teller distorted cations -- 8.3.2 Transition-metal cations with empty or near-empty d shells -- 8.4 Conclusions -- 9 Physical properties of bonds -- 9.1 Introduction -- 9.2 Bond lengths and bond angles -- 9.3 Bond force constants and thermal vibrations -- 9.4 Thermal expansion -- 9.5 The variation of Ro with temperature -- III Solids -- 10 Space and space groups -- 10.1 Introduction -- 10.2 The crystal lattice and translational symmetry -- 10.3 Space groups -- 10.4 Special positions -- 10.5 Matching the special positions to the chemistry -- 10.6 The symmetry of bonded neighbours -- 10.7 Summary -- 11 Modelling inorganic structures -- 11.1 The problem of a priori modelling -- 11.2 Determining the topology -- 11.2.1 Space-based approaches -- 11.2.2 Chemistry-based approaches -- 11.2.3 Valence maps -- 11.3 Refining the geometry -- 11.4 Modelling defect structures -- 11.5 Modelling glasses -- 11.6 Summary -- 12 Lattice-induced strain -- 12.1 The origins of lattice-induced strain -- 12.2 Structures with lattice-induced strain -- 12.3 Relaxation of lattice-induced strains -- 12.3.1 Relaxation of the geometry -- 12.3.2 Relaxation by defects -- 12.3.3 Electronic relaxation -- 12.3.4 Relaxation of symmetry-displacive phase transitions -- 12.3.5 Changing the bond -- graph-reconstructive phase transitions -- 12.4 Incommensurate structures -- 12.5 Summary -- IV Applications and implications -- 13 Applications -- 13.1 Introduction r -- 13.2 Crystallography -- 13.2.1 Structure solution -- 13.2.2 Analysis of crystal structures -- 13.3 Physics -- 13.3.1 Perovskite-related solids -- 13.3.2 Electrical properties -- 13.3.3 Magnetic properties -- 13.3.4 Grain boundaries -- 13.4 Mineralogy -- 13.4.1 Soil chemistry -- 13.4.2 Zeolites -- 13.4.3 Glasses -- 13.5 Chemistry -- 13.5.1 Nuclear magnetic resonance -- 13.5.2 Transition-metal complexes -- 13.5.3 Heterogeneous catalysis -- 13.5.4 Esterification and hydrolysis -- 13.6 Biology -- 13.6.1 Enzymes -- 13.6.2 Calcium and sodium binding by proteins -- 13.7 Databases -- 14 Chemical implications of the bond valence model -- 14.1 Why is the bond valence model so robust? -- 14.1.1 The attractive force -- 14.1.2 The repulsive force -- 14.2 Two-body potential models -- 14.3 The properties of the bond graph -- 14.4 The Lewis electron-pair model -- 14.5 Why are cations different from anions? -- 14.6 Orbital models -- 14.7 Electron density models -- 14.8 The topology of the Madelung field -- 14.9 Conclusions -- Appendices -- Appendix I Bond valence parameters -- Appendix 2 Space group spectra -- Appendix 3 Solution of the network equations -- Appendix 4 Cation and anion bonding strengths -- Appendix 5 References to the ICSD and the CSD -- References -- List of symbols -- Index.
There are no comments on this title.