Raman Research Institute Library OPAC

Raman Research Institute Library OPAC

Amazon cover image
Image from Amazon.com

Physics of gas-liquid flows / Thomas J. Hanratty, University of Illinois at Urbana-Champaign.

By: Material type: TextTextPublisher: Cambridge : Cambridge University Press, 2013Description: xxiii, 333 pages ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9781107041202 (hardback)
Subject(s): DDC classification:
  • 532/.56 23
LOC classification:
  • TA357.5.M84 H36 2013
Other classification:
  • TEC009010
Contents:
Machine generated contents note: 1. One-dimensional analysis; 2. Flow regimes; 3. Film flows; 4. Inviscid waves; 5. Stratified flows; 6. Viscous waves; 7. Long wavelength waves; 8. Bubble dynamics; 9. Slug flows; 10. Particle turbulence; 11. Vertical annular flow; 12. Horizontal annular flow.
Summary: "Presenting tools for understanding the behaviour of gas-liquid flows based on the ways large scale behaviour relates to small scale interactions, this text is ideal for engineers seeking to enhance the safety and efficiency of natural gas pipelines, water-cooled nuclear reactors, absorbers, distillation columns and gas lift pumps. The review of advanced concepts in fluid mechanics enables both graduate students and practising engineers to tackle the scientific literature and engage in advanced research. It focuses on gas-liquid flow in pipes as a simple system with meaningful experimental data. This unified theory develops design equations for predicting drop size, frictional pressure losses and slug frequency, which can be used to determine flow regimes, the effects of pipe diameter, liquid viscosity and gas density. It describes the effect of wavy boundaries and temporal oscillations on turbulent flows, and explains transition between phases, which is key to understanding the behaviour of gas-liquid flows"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliographical references and index.

Machine generated contents note: 1. One-dimensional analysis; 2. Flow regimes; 3. Film flows; 4. Inviscid waves; 5. Stratified flows; 6. Viscous waves; 7. Long wavelength waves; 8. Bubble dynamics; 9. Slug flows; 10. Particle turbulence; 11. Vertical annular flow; 12. Horizontal annular flow.

"Presenting tools for understanding the behaviour of gas-liquid flows based on the ways large scale behaviour relates to small scale interactions, this text is ideal for engineers seeking to enhance the safety and efficiency of natural gas pipelines, water-cooled nuclear reactors, absorbers, distillation columns and gas lift pumps. The review of advanced concepts in fluid mechanics enables both graduate students and practising engineers to tackle the scientific literature and engage in advanced research. It focuses on gas-liquid flow in pipes as a simple system with meaningful experimental data. This unified theory develops design equations for predicting drop size, frictional pressure losses and slug frequency, which can be used to determine flow regimes, the effects of pipe diameter, liquid viscosity and gas density. It describes the effect of wavy boundaries and temporal oscillations on turbulent flows, and explains transition between phases, which is key to understanding the behaviour of gas-liquid flows"-- Provided by publisher.

There are no comments on this title.

to post a comment.
Maintained by RRI Library