Raman Research Institute Library OPAC

Raman Research Institute Library OPAC

Amazon cover image
Image from Amazon.com

Machine learning for hackers / Drew Conway and John Myles White.

By: Contributor(s): Material type: TextTextPublication details: Sebastopol, CA : O'Reilly Media, 2012.Edition: 1st edDescription: xiii, 303 p. : ill. ; 24 cmISBN:
  • 9789350236741
Subject(s): DDC classification:
  • 005.1 23
LOC classification:
  • QA76.9.A43 C674 2012
Online resources:
Contents:
Machine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration versus Confirmation -- What Is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Visualizing the Relationships Between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority.
Contents note continued: Priority Features of Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker -- 5. Regression: Predicting Page Views -- Introducing Regression -- The Baseline Model -- Regression Using Dummy Variables -- Linear Regression in a Nutshell -- Predicting Web Traffic -- Defining Correlation -- 6. Regularization: Text Regression -- Nonlinear Relationships Between Columns: Beyond Straight Lines -- Introducing Polynomial Regression -- Methods for Preventing Overfitting -- Preventing Overfitting with Regularization -- Text Regression -- Logistic Regression to the Rescue -- 7. Optimization: Breaking Codes -- Introduction to Optimization -- Ridge Regression -- Code Breaking as Optimization -- 8. PCA: Building a Market Index -- Unsupervised Learning -- 9. MDS: Visually Exploring US Senator Similarity.
Contents note continued: Clustering Based on Similarity -- A Brief Introduction to Distance Metrics and Multidirectional Scaling -- How Do US Senators Cluster? -- Analyzing US Senator Roll Call Data (101st--111th Congresses) -- 10. kNN: Recommendation Systems -- The k-Nearest Neighbors Algorithm -- R Package Installation Data -- 11. Analyzing Social Graphs -- Social Network Analysis -- Thinking Graphically -- Hacking Twitter Social Graph Data -- Working with the Google SocialGraph API -- Analyzing Twitter Networks -- Local Community Structure -- Visualizing the Clustered Twitter Network with Gephi -- Building Your Own "Who to Follow" Engine -- 12. Model Comparison -- SVMs: The Support Vector Machine -- Comparing Algorithms.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Books Raman Research Institute Library 681.32 CON (Browse shelf(Opens below)) Available 29240

"Case studies and algorithms to get you started"--Cover.

Includes bibliographical references (p. 293-294) and index.

Machine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration versus Confirmation -- What Is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Visualizing the Relationships Between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority.

Contents note continued: Priority Features of Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker -- 5. Regression: Predicting Page Views -- Introducing Regression -- The Baseline Model -- Regression Using Dummy Variables -- Linear Regression in a Nutshell -- Predicting Web Traffic -- Defining Correlation -- 6. Regularization: Text Regression -- Nonlinear Relationships Between Columns: Beyond Straight Lines -- Introducing Polynomial Regression -- Methods for Preventing Overfitting -- Preventing Overfitting with Regularization -- Text Regression -- Logistic Regression to the Rescue -- 7. Optimization: Breaking Codes -- Introduction to Optimization -- Ridge Regression -- Code Breaking as Optimization -- 8. PCA: Building a Market Index -- Unsupervised Learning -- 9. MDS: Visually Exploring US Senator Similarity.

Contents note continued: Clustering Based on Similarity -- A Brief Introduction to Distance Metrics and Multidirectional Scaling -- How Do US Senators Cluster? -- Analyzing US Senator Roll Call Data (101st--111th Congresses) -- 10. kNN: Recommendation Systems -- The k-Nearest Neighbors Algorithm -- R Package Installation Data -- 11. Analyzing Social Graphs -- Social Network Analysis -- Thinking Graphically -- Hacking Twitter Social Graph Data -- Working with the Google SocialGraph API -- Analyzing Twitter Networks -- Local Community Structure -- Visualizing the Clustered Twitter Network with Gephi -- Building Your Own "Who to Follow" Engine -- 12. Model Comparison -- SVMs: The Support Vector Machine -- Comparing Algorithms.

There are no comments on this title.

to post a comment.
Maintained by RRI Library