Tutorials in complex photonic media /
editors, Mikhail A. Noginov ... [et al.].
- Bellingham, Wash. : SPIE Press, c2009.
- xxv, 696 p., [6] p. of plates : ill. (some col.) ; 26 cm.
Includes bibliographical references and index.
Foreword -- Preface -- List of contributors -- List of abbreviations-- 1. Negative refraction / Martin W. McCall and Graeme Dewar. 1.1. Introduction -- 1.2. Background -- 1.3. Beyond natural media: waves that run backward -- 1.4. Wires and rings -- 1.5. Experimental confirmation -- 1.6. The "perfect" lens -- 1.7. The formal criterion for achieving negative phase velocity propagation -- 1.8. Fermat's principle and negative space -- 1.9. Cloaking -- 1.10. Conclusion -- Appendix I. The e([omega]) of a square wire array -- Appendix II. Physics of the wire array's plasma frequency and damping rate -- References -- 2. Optical hyperspace: negative refractive index and subwavelength imaging / Leonid V. Alekseyev, Zubin Jacob, and Evgenii Narimanov. 2.1. Introduction -- 2.2. Nonmagnetic negative refraction -- 2.3. Hyperbolic dispersion: materials -- 2.4. Applications -- 2.5. Conclusion -- References. 3. Magneto-optics and the Kerr effect with ferromagnetic materials / Allan D. Boardman and Neil King. 3.1. Introduction to magneto-optical materials and concepts -- 3.2. Reflection of light from a plane ferromagnetic surface -- 3.3. Enhancing the Kerr effect with attenuated total reflection -- 3.4. Numerical investigations of attenuated total reflection -- 3.5. Conclusions -- References -- 4. Symmetry properties of nonlinear magneto-optical effects / Yutaka Kawabe. 4.1. Introduction -- 4.2. Nonlinear optics in magnetic materials -- 4.3. Magnetic-field-induced second-harmonic generation -- 4.4. Effects due to an optical magnetic field or magnetic dipole moment transition -- 4.5. Experiments -- References -- 5. Optical magnetism in plasmonic metamaterials / Gennady Shvets and Yaroslav A. Urzhumov. 5.1. Introduction -- 5.2. Why is optical magnetism difficult to achieve? -- 5.3. Effective quasistatic dielectric permittivity of a plasmonic metamaterial -- 5.4. Summary -- 5.5. Appendix. Electromagnetic red shifts of plasmonic resonances -- References. 6. Chiral photonic media / Ian Hodgkinson and Levi Bourke. 6.1. Introduction -- 6.2. Stratified anisotropic media -- 6.3. Chiral architectures and characteristic matrices -- 6.4. Reflectance spectra and polarization response maps -- 6.5. Summary -- References -- 7. Optical vortices / Kevin O'Holleran, Mark R. Dennis, and Miles J. Padgett. 7.1. Introduction -- 7.2. Locating vortex lines -- 7.3. Making beams containing optical vortices -- 7.4. Topology of vortex lines -- 7.5. Computer simulation of vortex structures -- 7.6. Vortex structures in random fields -- 7.7. Experiments for visualizing vortex structures -- 7.8. Conclusions -- References -- 8. Photonic crystals: from fundamentals to functional photonic opals / Durga P. Aryal, Kosmas L. Tsakmakidis, and Ortwin Hess. 8.1. Introduction -- 8.2. Principles of photonic crystals -- 8.3. One-dimensional photonic crystals -- 8.4. Generalization to two- and three-dimensional photonic crystals -- 8.5. Physics of Inverse-Opal Photonic Crystals -- 8.6. Double-Inverse-Opal Photonic Crystals (DIOPCs) -- 8.7. Conclusion -- 8.8. Appendix: Plane Wave Expansion (PWE) method -- References -- 9. Wave interference and modes in random media / Azriel Z. Genack and Sheng Zhang. 9.1. Introduction -- 9.2. Wave interference -- 9.3. Modes -- 9.4. Conclusions -- References -- 10. Chaotic behavior of random lasers / Diederik S. Wiersma, Sushil Mujumdar, Stefano Cavalieri, Renato Torre, Gian-Luca Oppo, Stefano Lepri. 10.1. Introduction -- 10.2. Experiments on emission spectra -- 10.3. Experiments on speckle patterns -- 10.4. Modeling -- 10.5. Lévy statistics in random laser emission -- 10.6. Discussion -- References. 11. Lasing in random media / Hui Cao. 11.1. Introduction -- 11.2. Random lasers with incoherent feedback -- 11.3. Random lasers with coherent feedback -- 11.4. Potential applications of random lasers -- References. Color plate section. 12. Feedback in random lasers / Mikhail A. Noginov. 12.1. Introduction -- 12.2. The concept of a laser -- 12.3. Lasers with nonresonant feedback and random lasers -- 12.4. Photon migration and localization in scattering media and their applications to random lasers -- 12.5. Neodymium random lasers with nonresonant feedback -- 12.6. ZnO random lasers with resonant feedback -- 12.7. Stimulated emission feedback: from nonresonant to resonant and back to nonresonant -- 12.8. Summary of various random laser operation regimes -- References -- 13. Optical metamaterials with zero loss and plasmonic nanolasers / Andrey K. Sarychev. 13.1. Introduction -- 13.2. Magnetic plasmon resonance -- 13.3. Electrodynamics of a nanowire resonator -- 13.4. Capacitance and inductance of two parallel wires -- 13.5. Lumped model of a resonator filled with an active medium -- 13.6. Interaction of nanontennas with an active host medium -- 13.7. Plasmonic nanolasers and optical magnetism -- 13.8. Conclusions -- References. 14. Resonance energy transfer: theoretical foundations and developing applications / David L. Andrews. 14.1. Introduction -- 14.2. Electromagnetic origins -- 14.3. Features of the pair transfer rate -- 14.4. Energy transfer in heterogeneous solids -- 14.5. Directed energy transfer -- 14.6. Developing applications -- 14.7. Conclusion -- References -- 15. Optics of nanostructured materials from first principles / Vladimir I. Gavrilenko. 15.1. Introduction -- 15.2. Optical response from first principles -- 15.3. Effect of the local field in optics -- 15.4. Electrons in quantum confined systems -- 15.5. Cavity quantum electrodynamics -- 15.6. Optical Raman spectroscopy of nanostructures -- 15.7. Concluding remarks -- Appendix I. Electron energy structure and standard density functional theory -- Appendix II. Optical functions within perturbation theory -- Appendix III. Evaluation of the polarization function including the local field effect -- Appendix IV. Optical field Hamiltonian in second quantization representation -- References.-- 16 Organic photonic materials / Larry R. Dalton, Philip A. Sullivan, Denise H. Bale, Scott R. Hammond, Benjamin C. Olbrict, Harrison Rommel, Bruce Eichinger, and Bruce H. Robinson. 16.1 Preface -- 16.2 Introduction -- 16.3 Effects of dielectric permittivity and dispersion -- 16.4 Complex dendrimer materials: effects of covalent bonds -- 16.5 Binary Chromophore Organic Glasses (BCOGs) -- 16.6 Thermal and photochemical stability: lattice hardening -- 16.7 Thermal and photochemical stability: measurement -- 16.8 Devices and applications -- 16.9 Summary and conclusions -- 16.10. Appendix. Linear and nonlinear polarization -- References. 17. Charge transport and optical effects in disordered organic semiconductors / Harry H. L. Kwok, You-Lin Wu, and Tai-Ping Sun. 17.1. Introduction -- 17.2. Charge transport -- 17.3. Impedance spectroscopy: bias and temperature dependence -- 17.4. Transient spectroscopy -- 17.5. Thermoelectric effect -- 17.6. Exciton formation -- 17.7. Space-charge effect -- 17.8. Charge transport in the field-effect structure -- References -- 18. Holography and its applications / H. John Caulfield and Chandra S. Vikram. 18.1. Introduction -- 18.2. Basic information on holograms -- 18.2.1 Hologram types -- 18.3. Recording materials for holographic metamaterials -- 18.4. Computer-generated holograms -- 18.5. Simple functionalities of holographic materials -- 18.6. Phase conjugation and holographic optical elements -- 18.7. Related applications and procedures -- References -- In memoriam: Chandra S. Vikram -- 19. Slow and fast light / Joseph E. Vornehm, Jr. and Robert W. Boyd. 19.1. Introduction -- 19.2. Slow light based on material resonances -- 19.3. Slow light based on material structure -- 19.4. Additional considerations -- 19.5. Potential applications -- References -- About the editors -- Index.
The field of complex photonic media encompasses many leading-edge areas in physics, chemistry, nanotechnology, materials science, and engineering. In [i]Tutorials in Complex Photonic Media[/i], leading experts have brought together 19 tutorials on breakthroughs in modern optics, such as negative refraction, chiral media, plasmonics, photonic crystals, and organic photonics.