Raman Research Institute Library OPAC

Raman Research Institute Library OPAC

Amazon cover image
Image from Amazon.com

Foundations of antenna engineering : a unified approach for line-of-sight and multipath / Per-Simon Kildal.

By: Material type: TextTextSeries: Artech House antennas and electromagnetics analysis libraryPublisher: Boston : Artech House, [2015]Copyright date: ©2015Description: xxi, 455 pages : illustrations ; 26 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9781608078677
Subject(s): DDC classification:
  • 621.384135 23
LOC classification:
  • TK7871.6 .K48 2015
Contents:
Machine generated contents note: 1.1.Antenna Types and Classes -- 1.2.Brief History of Antennas and Analysis Methods -- 1.3.Terminology, Quantities, Units, and Symbols -- 1.3.1.Radiation or Scattering -- 1.3.2.Reflection, Refraction, and Diffraction -- 1.3.3.Rays, Waves, Phase Fronts, and Phase Paths -- 1.3.4.SI Units for Fields and Sources and Decibels -- 1.3.5.Symbols -- 1.4.Vector Notation and Coordinate Transformations -- 1.4.1.Some Vector Formulas -- 1.4.2.Coordinate Transformations -- 1.4.3.Dyads -- 1.5.Overview on EM Analysis Methods by S. Maci -- References -- 2.1.Time-Harmonic Electromagnetic Fields -- 2.2.Plane Waves and Their Polarization -- 2.2.1.Linear Polarization -- 2.2.2.Circular Polarization -- 2.2.3.Axial Ratio and Cross-Polarization -- 2.2.4.Example: Amplitude and Phase Errors in Circular Polarization Excitations -- 2.2.5.Polarizer for Generating Circular Polarization -- 2.2.6.Example: Mismatch in Polarizer -- 2.3.Radiation Fields -- 2.3.1.Field Regions -- 2.3.2.Radiation Fields of Receiving Antennas -- 2.3.3.Far-Field Function and Radiation Intensity -- 2.3.4.Phase Reference Point and Fraunhofer Approximation -- 2.3.5.Polarization of Radiation Fields -- 2.3.6.Copolar and Cross-Polar Radiation Patterns -- 2.3.7.Phase Center -- 2.3.8.Total Radiated Power -- 2.3.9.Directive Gain and Directivity -- 2.3.10.Beamwidth -- 2.3.11.Cross-Polarization -- 2.3.12.Beam Efficiency -- 2.3.13.E- and H-Plane Patterns -- 2.3.14.Fourier Expansion of the Radiation Field -- 2.3.15.Example: Phase Reference Point for Asymmetric Phase Pattern -- 2.3.16.Example: Calculation of Phase Center of a Symmetric Beam -- 2.4.Rotationally Symmetric Antennas (BOR) -- 2.4.1.BOR0 Antennas with Rotationally Symmetric Radiation Fields -- 2.4.2.BOR1 Antennas -- 2.4.3.Example: Directivity of BOR1 Antenna with Low Sidelobes -- 2.4.4.Example: Directivity of BOR1 Antenna with High Far-Out Sidelobes -- 2.4.5.Example: BOR1 Antenna with Different E- and H-Plane Patterns -- 2.4.6.Example: BOR1 Antenna with Different E- and H-Plane Phase Patterns -- 2.5.System Characteristics of the Antenna -- 2.5.1.Antenna Gain -- 2.5.2.Aperture Efficiency and Effective Area -- 2.5.3.Friis Transmission Equation and the Radar Equation -- 2.5.4.Antenna Noise Temperature and G/T -- 2.5.5.Bandwidth -- 2.5.6.Tolerances -- 2.5.7.Environmental Effects -- 2.5.8.Example: Noise Temperature and G/T -- 2.6.Equivalent Circuits of Single-Port Antennas -- 2.6.1.Transmitting Antennas -- 2.6.2.Impedance Matching to Transmission Line -- 2.6.3.Receiving Antenna -- 2.6.4.Conjugate Impedance Matching -- 2.6.5.Impedance and Reflection Coefficient Transformations -- 2.7.Periodic Reflection Coefficients -- 2.8.Equivalent Circuits of Multiport Array Antennas -- 2.9.Further Reading -- 2.10.Complementary Comments by S. Maci -- 2.11.Exercises -- References -- 3.1.Multipath Without Line of Sight (LOS) -- 3.1.1.Rayleigh Fading and CDF -- 3.1.2.Angle of Arrival (AoA), XPD, and Polarization Imbalance -- 3.1.3.Rich Isotropic Multipath (RIMP) -- 3.2.Characterization of Single-Port Antennas in RIMP -- 3.2.1.Antenna Impedance, Port Impedance, and Reflection Coefficient -- 3.2.2.Mean Effective Gain (MEG) and Mean Effective Directivity (MED) -- 3.2.3.Total Radiation Efficiency and Transmission Formula -- 3.3.Characterization of Multiport Antennas in RIMP -- 3.3.1.Definition of Channel -- 3.3.2.Embedded Elements -- 3.3.3.Embedded Radiation Efficiency and Decoupling Efficiency -- 3.3.4.Correlation Between Ports -- 3.4.Characterization of Diversity Performance -- 3.4.1.Channel Estimation and Digital MRC Processing -- 3.4.2.Example: MRC Applied to 2-D Slot Antenna Case -- 3.4.3.Diversity Gains (Apparent, Effective, and Actual) -- 3.4.4.Theoretical Determination of Diversity Gain -- 3.5.Maximum Available Capacity from Shannon -- 3.5.1.Single-Port System -- 3.5.2.Parallel Channels in LOS -- 3.5.3.Parallel Channels in Multipath -- 3.5.4.Normalization -- 3.5.5.Numerical Simulation of Channels in Multipath -- 3.6.Emulation of RIMP Using Reverberation Chamber -- 3.6.1.Mode Stirring (Mechanical, Platform, Polarization) -- 3.6.2.The S-Parameters of the Chamber and of the Antennas -- 3.6.3.Rayleigh Fading, Rician Fading, and AoA Distribution -- 3.6.4.Average Transmission Level (Hill's Formula) and Calibration -- 3.6.5.Frequency Stirring on Net Transfer Function -- 3.6.6.Number of Independent Samples and Accuracy -- 3.7.Measurements in Reverberation Chamber -- 3.7.1.Calibration and Characterizing Multiport Antennas -- 3.7.2.Radiated Power, Receiver Sensitivity, and Data Throughput -- 3.8.System Modeling Using Digital Threshold Receiver -- 3.8.1.The Digital Threshold Receiver -- 3.8.2.Modeling OFDM in LTE 4G System -- 3.8.3.Theoretical and Measured Results for i.i.d. Diversity Case -- 3.9.MIMO Multiplexing to Obtain Multiple Bitstreams -- 3.9.1.Diagonalizing the Channel Matrix -- 3.9.2.Measurements of Two Bitstreams in Reverberation Chamber -- 3.9.3.Quality of Throughput in Terms of MIMO Efficiency -- 3.10.Antennas for Use on Handsets -- 3.11.Exercises -- References -- 4.1.Maxwell's Equations -- 4.1.1.Differential Form -- 4.1.2.Standard Boundary Conditions -- 4.1.3.Impressed Current Sources on PECs -- 4.1.4.Soft and Hard Boundary Conditions -- 4.1.5.Auxiliary Vector Potentials -- 4.2.Vector Integral Forms of the E- and H-Fields -- 4.2.1.General Expressions -- 4.2.2.Radiating Far-Field Expressions -- 4.2.3.Duality -- 4.2.4.Superposition -- 4.2.5.Replacement Between Electric and Magnetic Currents -- 4.2.6.Frequency Scaling -- 4.3.Construction of Solutions: Uniqueness and Equivalence -- 4.3.1.PEC Equivalent and Magnetic Currents -- 4.3.2.Free Space and Huygens Equivalents -- 4.3.3.Physical Equivalent -- 4.4.Incremental Current Sources -- 4.4.1.Incremental Electric Current (or Hertz Dipole) -- 4.4.2.Incremental Magnetic Current -- 4.4.3.Huygens Source -- 4.4.4.Summary -- 4.4.5.Example: Directivities of Incremental Sources -- 4.5.Reaction, Reciprocity, and Mutual Coupling -- 4.5.1.Reaction Integrals -- 4.5.2.Three Reciprocity Relations -- 4.5.3.Reciprocity Between Input and Output Ports of Antennas -- 4.5.4.Mutual Impedance, Mutual Admittance, and Coupling Coefficient -- 4.6.Imaging -- 4.7.Integral Equations, Method of Moments and Galerkin's Method -- 4.7.1.Simple Algorithm for the Near Field from the Line Current -- 4.7.2.Simple Algorithm for the Near Field from the Surface Current -- 4.8.Complementary Comments by S. Maci -- 4.9.Exercises -- References -- 5.1.Electric Monopole and Dipole -- 5.1.1.Approximate Current Distribution of a Monopole -- 5.1.2.Approximate Current Distribution of a Dipole -- 5.1.3.Far-Field Function of a Dipole -- 5.1.4.Directivity and Radiation Resistance of a Short Dipole -- 5.1.5.Equivalent Circuit and Maximum Effective Aperture of a Short Dipole -- 5.1.6.Directivity and Radiation Resistance of a Half-Wave Dipole -- 5.1.7.Self-Impedance of an Electric Dipole -- 5.1.8.Impedance of Cylindrical and Flat Electric Dipoles -- 5.1.9.Dipole at an Arbitrary Location -- 5.1.10.Arbitrary Dipole Above Ground -- 5.1.11.Vertical Dipole Above Ground -- 5.1.12.Vertical Monopole -- 5.1.13.Horizontal Dipole Above Ground -- 5.2.Electric Loop Antenna as Vertical Magnetic Dipole -- 5.3.Helical Antennas -- 5.4.Slot Antennas -- 5.4.1.Field Distribution and Radiation Pattern -- 5.4.2.Slot Admittance When Excited by Voltage Source -- 5.4.3.Slot Excited by a Plane Wave -- 5.4.4.Reflection Coefficient of Open Waveguide -- 5.4.5.Slots in Waveguide Walls -- 5.5.Further Reading -- 5.6.Complementary Comments by S. Maci -- 5.7.Exercises -- References -- 6.1.Transmission Line Model for a Rectangular Patch -- 6.1.1.Radiation Pattern by a Two-Slot Model -- 6.1.2.Impedance by a Transmission Line Model -- 6.2.Self-Reaction Model for Patch Impedance -- 6.2.1.Expansion of Current Distribution and Method of Moment -- 6.2.2.Impedance of Line-Fed Patches -- 6.2.3.Impedance of Probe-Fed Patches -- 6.3.Spectral Domain Methods -- 6.3.1.3-D Field Problem -- 6.3.2.Harmonic 1-D Field Problem -- 6.3.3.Green's Function of Harmonic 1-D Field Problem -- 6.3.4.Numerical Implementation -- 6.4.Further Reading -- 6.5.Complementary Comments by S. Maci -- 6.6.Exercises -- References -- 7.1.Apertures in PECs -- 7.1.1.PECs of Arbitrary Shape -- 7.1.2.Infinite PEC Planes -- 7.2.Virtual Apertures in Free Space -- 7.2.1.Free Space and Huygens Equivalents -- 7.2.2.Plane Apertures -- 7.3.Apertures in the xy-Plane -- 7.3.1.PEC Aperture and Its Incremental Element Factor -- 7.3.2.Free-Space Aperture and Its Incremental Element Factor -- 7.3.3.Power Integration over Aperture and Maximum Directivity -- 7.4.Rectangular Plane Aperture -- 7.4.1.E- and H-Plane Patterns -- 7.4.2.Directivity and Aperture Efficiency -- 7.4.3.Uniform Aperture Distribution -- 7.5.Circular Aperture with BOR1 Excitation -- 7.5.1.Aperture Field and Far-Field Function -- 7.5.2.Uniform Aperture Distribution -- 7.5.3.Gaussian Aperture Distribution -- 7.5.4.Tapered Aperture Distributions -- 7.6.Gaussian Beam -- 7.6.1.Gaussian Near Field -- 7.6.2.Phase Center of Gaussian Beam -- 7.6.3.Gaussian Far Field -- 7.6.4.Aperture Diffraction by Constant Phase Aperture -- 7.6.5.GO Radiation from Aperture with a Strongly Curved Wavefront -- 7.6.6.Alternative Expressions for Gaussian Beam Parameters -- 7.7.Complementary Comments -- 7.8.Exercises -- References -- 8.1.Calculation Methods -- 8.1.1.Cylindrical Waveguide Plane Aperture Approach -- 8.1.2.Radial Cylindrical Waveguide Approach -- 8.1.3.Conical and Apherical Sector Waveguide Approach -- 8.1.4.Flared Cylindrical Waveguide Approach -- 8.1.5.Mode-Matching Approach -- 8.1.6.Method of Moment Approach -- 8.2.E-Plane Sector Horn -- 8.2.1.Flared Cylindrical Waveguide Approach -- 8.2.2.Paraxial Approximation for a Plane Aperture Field -- 8.2.3.Radiation Patterns -- 8.3.H-Plane Sector Horn -- 8.3.1.Flared Cylindrical Waveguide Approach -- 8.3.2.Paraxial Approximation for a Plane Aperture Field -- 8.3.3.Radiation Patterns --
Summary: "This is the first textbook that contains a holistic treatment of traditional antennas mounted on masts (Line-of-Sight antenna systems) and small antennas used on modern wireless devices that are subject to signal variations (fading) due to multipath propagation. The focus is on characterization and describing classical antennas by modern complex vector theory, thereby linking together many disciplines, such as electromagnetic theory, classical antenna theory, wave propagation, and antenna system performance."--Back cover.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Books Raman Research Institute Library 621.396.67 KIL (Browse shelf(Opens below)) Available 28528

Includes bibliographical references and index.

Machine generated contents note: 1.1.Antenna Types and Classes -- 1.2.Brief History of Antennas and Analysis Methods -- 1.3.Terminology, Quantities, Units, and Symbols -- 1.3.1.Radiation or Scattering -- 1.3.2.Reflection, Refraction, and Diffraction -- 1.3.3.Rays, Waves, Phase Fronts, and Phase Paths -- 1.3.4.SI Units for Fields and Sources and Decibels -- 1.3.5.Symbols -- 1.4.Vector Notation and Coordinate Transformations -- 1.4.1.Some Vector Formulas -- 1.4.2.Coordinate Transformations -- 1.4.3.Dyads -- 1.5.Overview on EM Analysis Methods by S. Maci -- References -- 2.1.Time-Harmonic Electromagnetic Fields -- 2.2.Plane Waves and Their Polarization -- 2.2.1.Linear Polarization -- 2.2.2.Circular Polarization -- 2.2.3.Axial Ratio and Cross-Polarization -- 2.2.4.Example: Amplitude and Phase Errors in Circular Polarization Excitations -- 2.2.5.Polarizer for Generating Circular Polarization -- 2.2.6.Example: Mismatch in Polarizer -- 2.3.Radiation Fields -- 2.3.1.Field Regions -- 2.3.2.Radiation Fields of Receiving Antennas -- 2.3.3.Far-Field Function and Radiation Intensity -- 2.3.4.Phase Reference Point and Fraunhofer Approximation -- 2.3.5.Polarization of Radiation Fields -- 2.3.6.Copolar and Cross-Polar Radiation Patterns -- 2.3.7.Phase Center -- 2.3.8.Total Radiated Power -- 2.3.9.Directive Gain and Directivity -- 2.3.10.Beamwidth -- 2.3.11.Cross-Polarization -- 2.3.12.Beam Efficiency -- 2.3.13.E- and H-Plane Patterns -- 2.3.14.Fourier Expansion of the Radiation Field -- 2.3.15.Example: Phase Reference Point for Asymmetric Phase Pattern -- 2.3.16.Example: Calculation of Phase Center of a Symmetric Beam -- 2.4.Rotationally Symmetric Antennas (BOR) -- 2.4.1.BOR0 Antennas with Rotationally Symmetric Radiation Fields -- 2.4.2.BOR1 Antennas -- 2.4.3.Example: Directivity of BOR1 Antenna with Low Sidelobes -- 2.4.4.Example: Directivity of BOR1 Antenna with High Far-Out Sidelobes -- 2.4.5.Example: BOR1 Antenna with Different E- and H-Plane Patterns -- 2.4.6.Example: BOR1 Antenna with Different E- and H-Plane Phase Patterns -- 2.5.System Characteristics of the Antenna -- 2.5.1.Antenna Gain -- 2.5.2.Aperture Efficiency and Effective Area -- 2.5.3.Friis Transmission Equation and the Radar Equation -- 2.5.4.Antenna Noise Temperature and G/T -- 2.5.5.Bandwidth -- 2.5.6.Tolerances -- 2.5.7.Environmental Effects -- 2.5.8.Example: Noise Temperature and G/T -- 2.6.Equivalent Circuits of Single-Port Antennas -- 2.6.1.Transmitting Antennas -- 2.6.2.Impedance Matching to Transmission Line -- 2.6.3.Receiving Antenna -- 2.6.4.Conjugate Impedance Matching -- 2.6.5.Impedance and Reflection Coefficient Transformations -- 2.7.Periodic Reflection Coefficients -- 2.8.Equivalent Circuits of Multiport Array Antennas -- 2.9.Further Reading -- 2.10.Complementary Comments by S. Maci -- 2.11.Exercises -- References -- 3.1.Multipath Without Line of Sight (LOS) -- 3.1.1.Rayleigh Fading and CDF -- 3.1.2.Angle of Arrival (AoA), XPD, and Polarization Imbalance -- 3.1.3.Rich Isotropic Multipath (RIMP) -- 3.2.Characterization of Single-Port Antennas in RIMP -- 3.2.1.Antenna Impedance, Port Impedance, and Reflection Coefficient -- 3.2.2.Mean Effective Gain (MEG) and Mean Effective Directivity (MED) -- 3.2.3.Total Radiation Efficiency and Transmission Formula -- 3.3.Characterization of Multiport Antennas in RIMP -- 3.3.1.Definition of Channel -- 3.3.2.Embedded Elements -- 3.3.3.Embedded Radiation Efficiency and Decoupling Efficiency -- 3.3.4.Correlation Between Ports -- 3.4.Characterization of Diversity Performance -- 3.4.1.Channel Estimation and Digital MRC Processing -- 3.4.2.Example: MRC Applied to 2-D Slot Antenna Case -- 3.4.3.Diversity Gains (Apparent, Effective, and Actual) -- 3.4.4.Theoretical Determination of Diversity Gain -- 3.5.Maximum Available Capacity from Shannon -- 3.5.1.Single-Port System -- 3.5.2.Parallel Channels in LOS -- 3.5.3.Parallel Channels in Multipath -- 3.5.4.Normalization -- 3.5.5.Numerical Simulation of Channels in Multipath -- 3.6.Emulation of RIMP Using Reverberation Chamber -- 3.6.1.Mode Stirring (Mechanical, Platform, Polarization) -- 3.6.2.The S-Parameters of the Chamber and of the Antennas -- 3.6.3.Rayleigh Fading, Rician Fading, and AoA Distribution -- 3.6.4.Average Transmission Level (Hill's Formula) and Calibration -- 3.6.5.Frequency Stirring on Net Transfer Function -- 3.6.6.Number of Independent Samples and Accuracy -- 3.7.Measurements in Reverberation Chamber -- 3.7.1.Calibration and Characterizing Multiport Antennas -- 3.7.2.Radiated Power, Receiver Sensitivity, and Data Throughput -- 3.8.System Modeling Using Digital Threshold Receiver -- 3.8.1.The Digital Threshold Receiver -- 3.8.2.Modeling OFDM in LTE 4G System -- 3.8.3.Theoretical and Measured Results for i.i.d. Diversity Case -- 3.9.MIMO Multiplexing to Obtain Multiple Bitstreams -- 3.9.1.Diagonalizing the Channel Matrix -- 3.9.2.Measurements of Two Bitstreams in Reverberation Chamber -- 3.9.3.Quality of Throughput in Terms of MIMO Efficiency -- 3.10.Antennas for Use on Handsets -- 3.11.Exercises -- References -- 4.1.Maxwell's Equations -- 4.1.1.Differential Form -- 4.1.2.Standard Boundary Conditions -- 4.1.3.Impressed Current Sources on PECs -- 4.1.4.Soft and Hard Boundary Conditions -- 4.1.5.Auxiliary Vector Potentials -- 4.2.Vector Integral Forms of the E- and H-Fields -- 4.2.1.General Expressions -- 4.2.2.Radiating Far-Field Expressions -- 4.2.3.Duality -- 4.2.4.Superposition -- 4.2.5.Replacement Between Electric and Magnetic Currents -- 4.2.6.Frequency Scaling -- 4.3.Construction of Solutions: Uniqueness and Equivalence -- 4.3.1.PEC Equivalent and Magnetic Currents -- 4.3.2.Free Space and Huygens Equivalents -- 4.3.3.Physical Equivalent -- 4.4.Incremental Current Sources -- 4.4.1.Incremental Electric Current (or Hertz Dipole) -- 4.4.2.Incremental Magnetic Current -- 4.4.3.Huygens Source -- 4.4.4.Summary -- 4.4.5.Example: Directivities of Incremental Sources -- 4.5.Reaction, Reciprocity, and Mutual Coupling -- 4.5.1.Reaction Integrals -- 4.5.2.Three Reciprocity Relations -- 4.5.3.Reciprocity Between Input and Output Ports of Antennas -- 4.5.4.Mutual Impedance, Mutual Admittance, and Coupling Coefficient -- 4.6.Imaging -- 4.7.Integral Equations, Method of Moments and Galerkin's Method -- 4.7.1.Simple Algorithm for the Near Field from the Line Current -- 4.7.2.Simple Algorithm for the Near Field from the Surface Current -- 4.8.Complementary Comments by S. Maci -- 4.9.Exercises -- References -- 5.1.Electric Monopole and Dipole -- 5.1.1.Approximate Current Distribution of a Monopole -- 5.1.2.Approximate Current Distribution of a Dipole -- 5.1.3.Far-Field Function of a Dipole -- 5.1.4.Directivity and Radiation Resistance of a Short Dipole -- 5.1.5.Equivalent Circuit and Maximum Effective Aperture of a Short Dipole -- 5.1.6.Directivity and Radiation Resistance of a Half-Wave Dipole -- 5.1.7.Self-Impedance of an Electric Dipole -- 5.1.8.Impedance of Cylindrical and Flat Electric Dipoles -- 5.1.9.Dipole at an Arbitrary Location -- 5.1.10.Arbitrary Dipole Above Ground -- 5.1.11.Vertical Dipole Above Ground -- 5.1.12.Vertical Monopole -- 5.1.13.Horizontal Dipole Above Ground -- 5.2.Electric Loop Antenna as Vertical Magnetic Dipole -- 5.3.Helical Antennas -- 5.4.Slot Antennas -- 5.4.1.Field Distribution and Radiation Pattern -- 5.4.2.Slot Admittance When Excited by Voltage Source -- 5.4.3.Slot Excited by a Plane Wave -- 5.4.4.Reflection Coefficient of Open Waveguide -- 5.4.5.Slots in Waveguide Walls -- 5.5.Further Reading -- 5.6.Complementary Comments by S. Maci -- 5.7.Exercises -- References -- 6.1.Transmission Line Model for a Rectangular Patch -- 6.1.1.Radiation Pattern by a Two-Slot Model -- 6.1.2.Impedance by a Transmission Line Model -- 6.2.Self-Reaction Model for Patch Impedance -- 6.2.1.Expansion of Current Distribution and Method of Moment -- 6.2.2.Impedance of Line-Fed Patches -- 6.2.3.Impedance of Probe-Fed Patches -- 6.3.Spectral Domain Methods -- 6.3.1.3-D Field Problem -- 6.3.2.Harmonic 1-D Field Problem -- 6.3.3.Green's Function of Harmonic 1-D Field Problem -- 6.3.4.Numerical Implementation -- 6.4.Further Reading -- 6.5.Complementary Comments by S. Maci -- 6.6.Exercises -- References -- 7.1.Apertures in PECs -- 7.1.1.PECs of Arbitrary Shape -- 7.1.2.Infinite PEC Planes -- 7.2.Virtual Apertures in Free Space -- 7.2.1.Free Space and Huygens Equivalents -- 7.2.2.Plane Apertures -- 7.3.Apertures in the xy-Plane -- 7.3.1.PEC Aperture and Its Incremental Element Factor -- 7.3.2.Free-Space Aperture and Its Incremental Element Factor -- 7.3.3.Power Integration over Aperture and Maximum Directivity -- 7.4.Rectangular Plane Aperture -- 7.4.1.E- and H-Plane Patterns -- 7.4.2.Directivity and Aperture Efficiency -- 7.4.3.Uniform Aperture Distribution -- 7.5.Circular Aperture with BOR1 Excitation -- 7.5.1.Aperture Field and Far-Field Function -- 7.5.2.Uniform Aperture Distribution -- 7.5.3.Gaussian Aperture Distribution -- 7.5.4.Tapered Aperture Distributions -- 7.6.Gaussian Beam -- 7.6.1.Gaussian Near Field -- 7.6.2.Phase Center of Gaussian Beam -- 7.6.3.Gaussian Far Field -- 7.6.4.Aperture Diffraction by Constant Phase Aperture -- 7.6.5.GO Radiation from Aperture with a Strongly Curved Wavefront -- 7.6.6.Alternative Expressions for Gaussian Beam Parameters -- 7.7.Complementary Comments -- 7.8.Exercises -- References -- 8.1.Calculation Methods -- 8.1.1.Cylindrical Waveguide Plane Aperture Approach -- 8.1.2.Radial Cylindrical Waveguide Approach -- 8.1.3.Conical and Apherical Sector Waveguide Approach -- 8.1.4.Flared Cylindrical Waveguide Approach -- 8.1.5.Mode-Matching Approach -- 8.1.6.Method of Moment Approach -- 8.2.E-Plane Sector Horn -- 8.2.1.Flared Cylindrical Waveguide Approach -- 8.2.2.Paraxial Approximation for a Plane Aperture Field -- 8.2.3.Radiation Patterns -- 8.3.H-Plane Sector Horn -- 8.3.1.Flared Cylindrical Waveguide Approach -- 8.3.2.Paraxial Approximation for a Plane Aperture Field -- 8.3.3.Radiation Patterns --

"This is the first textbook that contains a holistic treatment of traditional antennas mounted on masts (Line-of-Sight antenna systems) and small antennas used on modern wireless devices that are subject to signal variations (fading) due to multipath propagation. The focus is on characterization and describing classical antennas by modern complex vector theory, thereby linking together many disciplines, such as electromagnetic theory, classical antenna theory, wave propagation, and antenna system performance."--Back cover.

There are no comments on this title.

to post a comment.
Maintained by RRI Library